
Veri�cation and Validation of KBS With Neural Network

Components

Wu Wen and John Callahan
NASA/WVU Software Research Laboratory

886 Chestnut Ridge Road
Morgantown, WV 26506-6506

Abstract

Arti�cial Neural Networks(ANN) play an im-
portant role in developing robust Knowledge
Based Systems(KBS). The ANN based compo-
nents used in these systems learn to give appro-
priate predictions through training with correct
input-output data patterns. Unlike traditional
KBS that depends on a rule database and a pro-
duction engine, the ANN based system mimics
the decisions of an expert without speci�cally for-
mulating the if-then type of rules. In fact, the
ANNs demonstrate their superiority when such
if-then type of rules are hard to generate by hu-
man expert. Veri�cation of traditional knowledge
based system is based on the proof of consistency
and completeness of the rule knowledge base and
correctness of the production engine. These tech-
niques, however, can not be directly applied to
ANN based components. In this position paper,
we propose a veri�cation and validation proce-
dure for KBS with ANN based components. The
essence of this procedure is to obtain an accurate
system speci�cation through incremental modi�-
cation of the speci�cations using an ANN rule ex-
traction algorithm. First, the ANN based compo-
nents are speci�ed using available domain knowl-
edge and implemented based on this speci�ca-
tion. Next, past data sets are used to train the
ANN components. An rule extraction algorithm
is then applied to the trained ANN. Extracted
rules are then analyzed and incrementally incor-
porated into the system speci�cation. Finally,
the modi�ed speci�cations are veri�ed for cor-
rectness and the product tested against the cor-
rect speci�cations.

Introduction

This research is motivated by the recent surge in ap-
plications of ANNs in real world systems, especially
in safety critical systems. Procedures for veri�cation
of such system should satisfy criteria that are used
to verify conventional systems. This position paper
is our �rst e�ort in understanding the di�erences be-
tween the conventional and ANN based system. We
also attempt to show how this di�erence can be dealt

with in some cases. Currently we are working with a
research group here in West Virginia University that
uses ANNs to learn how to y a model airplane. Fur-
thermore, this ANN based system is then used as the
autopilot(Napolitano and Kincheloe 1995) to control
the airplane. Veri�cation and validation of the autopi-
lot thus designed will be critical for safety purposes.
In designing traditional autopilot systems, di�erent

types of controllers and control strategies are applied
to di�erent segments of the autopilot operation pro�le.
Autopilot performance within each segment and dur-
ing transition between segments are vigorously veri�ed
and tested for safety. The adaptation of ANN based
controller eliminated the need for a segmented design
thus simpli�es the overall system design.
The ANN based autopilot described above either

learns from previously recorded ight data or through
on-line learning from an actual pilot. Experimental
results have shown that the ANN based approach has
the advantages of shorter response time, reduced os-
cillation and improved robustness. Moreover, it can
be proven(Hornik 1991; Cybenko 1989) that feedfor-
ward ANN with hidden layer can approximate any
input/output relationship given appropriate network
topology.
However, a number of questions must be answered

before they can be used in such real-world safety crit-
ical situations.

� Completeness of training data: does the
recorded ight data or the on-line data from actu-
ally pilot ying contains all possible situations that
an airplane will be in?

� Flight envelope: what will be the performance
of the ANN based autopilot in the vicinity of the
boarder region of the ight envelope?

� Generalization: neural networks are known to be
capable of generalization so patterns that have not
appeared in the training data can be dealt with ap-
propriately. However, to what extend this gener-
alization applies depends on a lot of factors, such
as the number of units and training methods. How
can we verify that which cases were generalized and
which were not?



� Validation: traditional autopilot system is tested
by simulating ight conditions in each segments of
the ight envelop. Tests for performance within seg-
ment and during transitions are vigorously tested.
For ANN based autopilot system, such tests will be
di�cult to generate. Exhaustive testing will also be
di�cult if not impossible.

There are two essential problems with veri�cation
and validation of any system:

� That the developed system satis�es the speci�cation
must be veri�ed;

� That the correctness of the speci�cation must be ver-
i�ed.

To this end, an accurate speci�cation of the sys-
tem and testable speci�cation-product correspondence
must be provided. This is especially true for ANN
based system where the speci�cations are lacking in
precision. Furthermore, any changes in the speci�ca-
tions must be identi�able and veri�able in the product
and vice versa.
The rest of the paper is organized as follows. In Sec-

tion 2 we �rst clarify the term Veri�cation and Val-
idation of knowledge based systems. In section 3 we
describe how domain knowledge based speci�cations
can be used to implement the fuzzy neural networks.
Then we will briey show how rule extraction can be
used to modify the speci�cations. Section 4 describes
a procedure for the veri�cation and validation of ANN
based system using fuzzy neural network learning and
rule extraction. Finally in section 5 we discuss the lim-
itation of this approach and what our future work will
be.

Requirements Speci�cation and

Veri�cation
We �rst briey describe our example problem. The
model airplane to be controlled by the autopilot has
the following inputs: altitude, airspeed, acceleration,
pitch and roll angle, surface reection of the rudder
and aileron and angle of attack. The outputs include:
aileron, rudder and throttle control position. The au-
topilot system contains the following subsystems: alti-
tude hold subsystem, airspeed hold system, pitch hold
system and roll angle control system. Conventional
speci�cation of such system contains detailed descrip-
tion of controller behavior at various segments of the
ight envelope. For example, the altitude will be di-
vided into taking-o�, low altitude, cruise altitude and
landing etc. The airspeed will also be divided into
taking-o�, acceleration, cruising, prepare for landing
and landing. Maneuvers and control actions such as
turning, ascending and descending are speci�ed in de-
tails with respect to each of the segmented ight condi-
tions. It is clear that a vague speci�cation based on the
above conventional speci�cation can be used to capture
the domain knowledge in specifying the autopilot sys-
tem. The exact states, boundaries of the segments will

not be known at this stage. This level of speci�cation
forms a conceptual understanding of the problem at
hand.
In software engineering de�nition, veri�cation is

the e�ort to substantiate that the system correctly
implements the system speci�cations(London 1977;
Andrion, Branstad and Chernlavsky 1982). A more
detailed de�nition(Andriole 1986) declares that veri�-
cation is the determination that the software product
is correct, complete, and consistent within itself and its
speci�cation. According to IEEE, software veri�cation
is the process of determining whether or not the prod-
ucts of a given phase of software development meet
all of the requirements established during the previous
phase(IEEE 1983).
The general framework for veri�cation of knowl-

edge based system has been described in various
works(Andert 1992; Gupta 1991; Laurent and Ayel
1991; Nazareth and Kennedy 1993). It usually consists
of a static veri�cation phase and a dynamic veri�cation
phase. In static veri�cation the following analysis are
usually conducted:

� Consistency checking

{ checking for redundant rules

{ checking for conicting rules

{ checking for circular logic

{ KB language semantics checking

� Completeness checking

{ checking for dead-end condition

{ checking for unreachable conclusion

{ exhaustive completeness check

Dynamic veri�cation usually involves testing of the
decision path for consistency and completeness. The
functions of the knowledge base will also be tested
against its requirements speci�cation. Sometimes his-
toric data that are generated by human expert are used
to generate test cases to further verify the knowledge
base.
These veri�cation techniques apply to most of the

knowledge based systems that are developed on a
knowledge database and a production engine. How-
ever, when ANN based components are incorporated
into the knowledge based system, the above veri�ca-
tion technique can not be used to directly verify such
system.
The development of a de�nitive requirements spec-

i�cation for any real-world software system is di�cult
and often subject to inaccuracies. ANN based system
poses further challenges. The neural networks is sup-
posed to learn and discover the structure and parame-
ters of the problem system at hand through training.
We maintain that the development of a usable re-

quirement speci�cation is a dynamic process that can
not be determined completely at the start of the design.
Therefore the veri�cation e�ort must accommodate the
dynamic characteristics and facilitate the formulation



and revision of the requirement speci�cation. This is
especially true for real world systems that are hard to
specify in de�nitive terms and must evolve along the
development cycle. The ANN based autopilot system
is such an example. The initial requirement speci�ca-
tion of such system can be as simple as \This ANN
based autopilot system should behave as closely to the
human pilot it learns from as possible".
It can be argued that the purpose of using such learn-

ing based approach is to eliminate the need for an
detailed speci�cation. However, from an engineering
point of view, if such speci�cations can not be veri-
�ed or tested, alternative speci�cations must be found
to this end. We therefore require that the speci�ca-
tions describe behavior of the system with respect to
its functional states. These functional states must be
complete but can be vague and at a high level in the
beginning. As much as possible domain related knowl-
edge must be incorporated at this stage. The rest of
this paper describes a tentative approach to maintain a
system representation which is conducive to the speci�-
cation and which allows such speci�cations be detailed,
modi�ed and veri�ed.

Mapping Requirement Speci�cations To

Fuzzy Neural Networks

Fuzzy logic was invented to allow people to make
generalizations about system behavior in linguistic
terms and manipulate them with approximate reason-
ing(Zadeh 1965). In fact, many natural language re-
quirement speci�cations can be regarded as fuzzy. It
must be pointed out that the fuzzy description of the
system behavior can be consistent and complete with-
out being speci�c. For many complex real-world prob-
lem, the detailed speci�cations may be di�cult to ob-
tain at the time of the design. That is why traditional
fuzzy systems are designed and implemented through
trial-and-error.
On the other hand fuzzy neural networks(Cox 1992;

Kosko 1992; Khan 1993) have gained considerable ac-
ceptance in recent years due to the fact that it com-
bines the domain knowledge based approach of fuzzy
logic and self organizing and self adapting property of
neural networks. One of the main objectives of using
fuzzy neural nets is to use the neural nets to solve a
problem and at the same time explain how it is done.
In (Kong and Kosko 1992) an fuzzy neural nets ap-
proach is used to learn the control strategies of the
backing-up of a truck-and-trailer and to extract fuzzy
rules of these strategies. The authors claimed that
the fuzzy neural networks not only can learn how to
back up the truck, but also can tell you what it has
learned. For a detailed discussion on fuzzy neural net-
works please refer to (Kosko 1992).
It must be pointed out that these is nothing fuzzy

about the fuzzy logic rules in terms of its mapping of
the input-output relationships. Once the fuzzy sets
and its associated membership functions are deter-

mined, the fuzzy logic system describes a unique map-
ping between the input and output state spaces. It can
be proven(Kosko 1992) that with appropriate choice of
the fuzzy sets and their membership functions, fuzzy
logic based system can approximate any bounded and
continuous function. Conventional fuzzy logic system
requires human fuzzy engineers to determine the fuzzy
sets and the fuzzy membership function. These rules
and functions are then modi�ed based on trial-and-
error. By combining neural networks with fuzzy logic,
fuzzy logic based system can be automatically con�g-
ured through learning.
For our example of specifying the autopilot, the

highly non-linearity of the ight system means that a
de�nitive description of the system behavior will be dif-
�cult to obtain. It is, however, possible to describe its
behavior in a vague term based on our domain knowl-
edge of the ight control system. Input variables such
as altitude, airspeed, angle of attack etc can be mod-
eled adequately by fuzzy sets. For example, altitude
can be modeled as a fuzzy set containing taking-o�,
low, cruise, landing etc; airspeed can be taking-o�, as-
cending, cruise and landing. The boundary and mem-
bership function that will uniquely describe the input
state space will be determined by the ANN based learn-
ing.
Speci�cations such as safety constraints and proce-

dures are harder to map onto the fuzzy set since they
are dependent on the dynamic behavior of the system.
For example, in traditional autopilot design, require-
ment speci�cations may include sentences such as \Un-
der no circumstance should the throttle be advanced
if the airplane is ascending with high angle of attack
and low airspeed". However, certain constrains can be
readily implemented as �xed weight connections on the
units of ANN. In any case, such a high level speci�ca-
tion allows safety constrains such as those described
above to be incorporated into the system represen-
tation. Veri�cation can then be conducted once the
boundaries and functions of the fuzzy sets are found.
The fuzzy neural network system development

paradigm is very important to the veri�cation and val-
idation of complex, real-world system development.

� it allows the full integration of expert domain knowl-
edge into speci�cation;

� it accommodates gradual modi�cations on both
speci�cation and implementation through fuzzy neu-
ral nets rule extraction.

The close coupling of speci�cation and implementa-
tion allows e�ective veri�cation and validation to be
conducted.

Rule Extraction in Neural Networks

Recent development in neural networks research has
shown that it is possible to extract simple input/output
relationships/rules by pruning the number of connec-
tions and discretizing hidden-unit activation values



through clustering(Setiono and Liu 1996; Towell and
Shavlik 1993). In (Setiono and Liu 1996) an algo-
rithm called NeuoRule is developed to extract simple
diagnostic decision rules from human expert diagno-
sis database. The NeuoRule algorithm is based on a
standard three-layer feed-forward network. The rule
extraction consists of four phases:

� build a weight-decay back-propagation network so
that weights reect the importance of the networks'
connection;

� prune the network to remove irrelevant connections
and units while maintaining the network's accuracy;

� discretize the hidden-unit activation values by clus-
tering;

� extracts rules from the network with discretized
hidden-unit activation values.

The neural network rule extraction described above
has signi�cant role in veri�cation and validation of
knowledge based systems that uses neural networks.
Through rule extraction, domain knowledge based
speci�cations can be further veri�ed against the ac-
tual behavior of the system. New rules discovered and
extracted by the NeuroRule algorithm will be used to
modify the speci�cations.

Veri�cation of the Neural Network

Based System

Based on the domain knowledge based fuzzy speci�-
cation and the rule extraction algorithm, we propose
an incremental procedure for the veri�cation and val-
idation of ANN based systems. This is illustrated in
Figure 1.

Fuzzy speci�cation

The domain knowledge that is used in building con-
ventional system can be exploited. Based on the con-
ventional speci�cation, fuzzy sets can be derived to
describe the high level behavior of the system. This
fuzzy set speci�cation can be checked for completeness
and consistency using formal veri�cation tools such as
PVS(Crow et al. 1995).

Multiple Neural Nets

The ANN based autopilot described in (Napolitano
and Kincheloe 1995) is implemented on a distributed
neural networks. The modules for altitude control,
speed control and turning etc are implemented on dif-
ferent neural network modules that are trained sep-
arately. Conventional autopilot speci�cations include
detailed description of behaviors during mode transi-
tion to ensure safety. Fuzzy speci�cations allow such
high level transition rules to be incorporated. These
are examples of such rules:

Fuzzy Neural Networks

Fuzzy Rules Extracted Rules

Control

Outputs

Training

Inputs

Requirement Specification Modified Specification

Rule Extraction

Domain Knowledge

Figure 1: Incremental Modi�cation of Speci�cation
and Speci�cation-product Correspondence

� When angle of attack is too high and airspeed is
too low, transit from ascending mode to horizontal
mode;

� The transition period from ascending mode to hori-
zontal mode must not exceed a fraction of a second.

The correctness and safety properties such as those
described above can be veri�ed using tools such as the
SPINTOOL(Holzmann 1994) once the time delay can
be determined from the learned system.

Fuzzy Neural Network Learning

The membership functions of the fuzzy sets can
then be learned using data generated from the trained
ANNs. For this procedure the NeuroFuz tool(Khan
1993) can be used to determine the membership func-
tions and prune the redundant fuzzy rules.



Rule Extraction

In order to verify that the fuzzy speci�cations do
contain all the necessary input-output relationships
embedded in the real system, rule extraction algo-
rithm based on NeuroRule(Setiono and Liu 1996) can
be used. The extracted rules are then compared with
the learned fuzzy rules. Conicts and inconsistencies
must be resolved by human expert at this stage and
fuzzy speci�cation modi�ed.

Veri�cation

The above procedure iterates until the fuzzy rules
and the extracted rules are consistent. The modi�ed
fuzzy speci�cation is then further checked for consis-
tency and completeness. Mode transition and safety
properties are also checked for the modi�ed speci�ca-
tion. Finally we arrive at an ANN based system that
is consistent with its speci�cation.

Discussion and Future Work
This position paper describes an incremental proce-
dure for verifying knowledge based system with ANN
based components. First, domain knowledge is con-
verted into fuzzy speci�cations that describe the high
level behavior of the system. Next, fuzzy neural net-
work tools are used to obtain accurate membership
functions and simplify the fuzzy rules. Furthermore,
rules are extracted from the ANNs using NeuroRule
and compared with the fuzzy rules. Fuzzy speci�ca-
tions are then modi�ed and the results compared again.
Finally the fuzzy speci�cation is checked for consis-
tency, correctness and safety.
The appropriateness of this approach will depend

on the applicability of the fuzzy neural networks and
the rule extraction algorithm. Domain knowledge also
plays an important role in giving a more accurate spec-
i�cation to begin with. Unfortunately at this stage, we
are not able to report on the details of the application
of this approach due to the short time we have em-
barked on this project. Currently we are training the
ANNs using a simple conventional rule based autopi-
lot. We plan to use the rule extraction algorithm to
extract rules from the above learned ANNs and com-
pare them with the simple rules that was used to train
the ANNs. If these simple rules that were used to drive
the auto-pilot can be extracted, we can then proceed
in applying the veri�cation procedure described in this
paper for the ANN based auto-pilot.

References
W. Adrion, M. Branstad, and J. Chernlavsky. Vali-
dation, veri�cation and testing of computer software.
ACM Computing Surveys, 14:159{192, 1982.

S. Andriole. Software Validation, Veri�cation, Test-
ing and Documentation. Petrocelli Books, 1986.

E. P. Anert. Integrated knowledge-based system de-
sign and validation for solving problems in uncer-
tain environments. Int. J. of Man-Machine Studies,
36:357{373, 1992.

E. Cox. Integrating fuzzy logic into neural nets. AI
Expert, pages 43{47, 1992.

J. Crow, S Owre, J. Rushby, N. Shankar, and M. Sri-
vas. A tutorial introduction to pvs. In Work-
shop on Industrail-Strenth Formal Speci�cation Tech-
niques, Boca Raton, Florida, Apri 1995.

G. Cybenko. Approximation by superposition of sig-
noidal functions. Mathematics of Control Signals and
Systems, 2(4):303, 1989.

U. Gupta. Validating and verifying knowledge-based
systems. In IEEE Computer Society Press, Los
Alamitos, California, 1991.

G. J. Holzmann. Basic spin manual. Technical report,
1994.

K. Hornik. Approximation capabilities of multilayer
feedforward neural networks. Neural Networks, 1:251{
257, 1991.

IEEE. Standard glossary for software engineering ter-
minology. IEEE Standard, page 729, 1983.

E. Khan. Neufuz: An intelligent combination of fuzzy
logic with neural nets. In IJCNN93, Nagoya, Japan,
Oct 1993.

S. Kong and B. Kosko. Adaptive fuzzy systems for
backing up a truck-and-trailer. IEEE Transactions
on Neural Networks, 3(2):211{223, 1992.

B. Kosko. Neural Networks and Fuzzy Logic. Pentice
Hall, 1992.

J. P. Laurent and M. Ayel. Veri�cation, Validation
and Test of KBS. John Wiley, 1991.

R. L. London. Current Trends in Programming
Methodology: Volume 2 Program Validation, chapter
Perspectives on Program Veri�cation. Prentice Hall,
1977.

M. R. Napolitano and M. Kincheloe. On-line learning
nueral network controllers for autopilot systems. In
95' AIAA Guidance Navigation and Control Confer-
ence, Baltimore, Md, August 1995.

D. L. Nazareth and M. H. Kennedy. Knowledge-
based system veri�cation, validation and testing: The
evolution of a discipline. Int. J. of Expert Systems,
6(2):143{162, 1993.

R. Setiono and H. Liu. Symbolic representation of
neural networks. IEEE Computer Magzine, pages 71{
77, 1996.

G. G. Towell and J. W. Shavlik. Extracting re�ned
rules fromknowledge-based neural networks. Machine
Learning, 13(1):71{101, 1993.

L. A. Zadeh. Fuzzy sets. Information and Control,
8:338{353, 1965.


